Equalizing ideal for integer-valued polynomials over the upper triangular matrix ring
Let $D$ be an integral domain and $I$ be an ideal of the upper trangular matrix ring $T_{n}(D)$. In this paper, we study the equalizing ideal$$q_{I}=\{A\in T_n(D)|f(A)-f(0)\in I,\forall f\in {\operatorname{Int}}(T_n(D))\}.$$of the integer-valued polynomials over $T_{n}(D)$. 1. IntroductionLet $\math...
Main Author: | |
---|---|
Format: | Article |
Language: | fas |
Published: |
University of Isfahan
2023-08-01
|
Series: | ریاضی و جامعه |
Subjects: | |
Online Access: | https://math-sci.ui.ac.ir/article_27746_fd91780269f995d21ff1a5762059606b.pdf |