Liouville type theorem for a singular elliptic equation with finite Morse index
Abstract This paper considers the nonexistence of solutions for the following singular quasilinear elliptic problem: 0.1 {−div(|x|−ap|∇u|p−2∇u)=f(|x|)|u|r−1u,x∈R+N,|x|−ap|∇u|p−2∂u∂ν=g(|x|)|u|q−1u,on ∂R+N, $$\begin{aligned} \textstyle\begin{cases} -\operatorname{div} ( \vert x \vert ^{-ap} \vert \nab...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-03-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1173-5 |