Immediately implantable extracellular matrix-enriched osteoinductive hydrogel-laden 3D-printed scaffold for promoting vascularized bone regeneration in vivo
Reconstruction of patient-specific scaffolds to repair uniquely shaped bone defects remains a major clinical challenge in tissue engineering. Recently, three-dimensional (3D) printed scaffolds have received considerable attention as a promising technology for the rapid generation of custom shapes. H...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2022-07-01
|
Series: | Materials & Design |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0264127522004233 |