High TMR for both in-plane and perpendicular magnetic field justified by CoFeB free layer thickness for 3-D MTJ sensors
We systematically studied the characteristics and influence of free layer thickness in magnetic tunnel junction (MTJ) with a perpendicular synthetic antiferromagnetic (p-SAF) reference layer on 8-inch wafer. The results show clearly that there is an optimal thickness of free layer to achieve the hig...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2019-08-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.5117320 |
Summary: | We systematically studied the characteristics and influence of free layer thickness in magnetic tunnel junction (MTJ) with a perpendicular synthetic antiferromagnetic (p-SAF) reference layer on 8-inch wafer. The results show clearly that there is an optimal thickness of free layer to achieve the highest tunneling magnetoresistance (TMR) ratio of as high as 80.5% and 53.7% with perpendicular and in-plane magnetic field, respectively, while the resistance-area product (RA) reaches also highest value of 21.1 Ω*μm2. The thickness range of CoFeB to obtain perpendicular magnetic anisotropy (PMA) is determined. The variation of the magnetic moment of free layer indicates that the three-dimensional (3D) sensors can be designed by varying the thickness of the free layer and be controlled by the perpendicular and in-plane components through annealing under the in-plane magnetic field. |
---|---|
ISSN: | 2158-3226 |