A proteomic survival predictor for COVID-19 patients in intensive care

Global healthcare systems are challenged by the COVID-19 pandemic. There is a need to optimize allocation of treatment and resources in intensive care, as clinically established risk assessments such as SOFA and APACHE II scores show only limited performance for predicting the survival of severely i...

Full description

Bibliographic Details
Main Authors: Vadim Demichev, Pinkus Tober-Lau, Tatiana Nazarenko, Oliver Lemke, Simran Kaur Aulakh, Harry J. Whitwell, Annika Röhl, Anja Freiwald, Mirja Mittermaier, Lukasz Szyrwiel, Daniela Ludwig, Clara Correia-Melo, Lena J. Lippert, Elisa T. Helbig, Paula Stubbemann, Nadine Olk, Charlotte Thibeault, Nana-Maria Grüning, Oleg Blyuss, Spyros Vernardis, Matthew White, Christoph B. Messner, Michael Joannidis, Thomas Sonnweber, Sebastian J. Klein, Alex Pizzini, Yvonne Wohlfarter, Sabina Sahanic, Richard Hilbe, Benedikt Schaefer, Sonja Wagner, Felix Machleidt, Carmen Garcia, Christoph Ruwwe-Glösenkamp, Tilman Lingscheid, Laure Bosquillon de Jarcy, Miriam S. Stegemann, Moritz Pfeiffer, Linda Jürgens, Sophy Denker, Daniel Zickler, Claudia Spies, Andreas Edel, Nils B. Müller, Philipp Enghard, Aleksej Zelezniak, Rosa Bellmann-Weiler, Günter Weiss, Archie Campbell, Caroline Hayward, David J. Porteous, Riccardo E. Marioni, Alexander Uhrig, Heinz Zoller, Judith Löffler-Ragg, Markus A. Keller, Ivan Tancevski, John F. Timms, Alexey Zaikin, Stefan Hippenstiel, Michael Ramharter, Holger Müller-Redetzky, Martin Witzenrath, Norbert Suttorp, Kathryn Lilley, Michael Mülleder, Leif Erik Sander, Florian Kurth, Markus Ralser
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLOS Digital Health
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9931303/?tool=EBI