Optimizing sEMG Gesture Recognition: Leveraging Channel Selection and Feature Compression for Improved Accuracy and Computational Efficiency
In the task of upper-limb pattern recognition, effective feature extraction, channel selection, and classification methods are crucial for the construction of an efficient surface electromyography (sEMG) signal classification framework. However, existing deep learning models often face limitations d...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-04-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/14/8/3389 |