A machine learning framework supporting prospective clinical decisions applied to risk prediction in oncology

Abstract We present a general framework for developing a machine learning (ML) tool that supports clinician assessment of patient risk using electronic health record-derived real-world data and apply the framework to a quality improvement use case in an oncology setting to identify patients at risk...

Descrición completa

Detalles Bibliográficos
Main Authors: Lorinda Coombs, Abigail Orlando, Xiaoliang Wang, Pooja Shaw, Alexander S. Rich, Shreyas Lakhtakia, Karen Titchener, Blythe Adamson, Rebecca A. Miksad, Kathi Mooney
Formato: Artigo
Idioma:English
Publicado: Nature Portfolio 2022-08-01
Series:npj Digital Medicine
Acceso en liña:https://doi.org/10.1038/s41746-022-00660-3