Sparse analytic systems
Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $\mathcal {F}$ of (real or complex) analytic functions, such that $\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$ is countable for every x. We strengthen Erdős’ result by proving...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2023-01-01
|
Series: | Forum of Mathematics, Sigma |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2050509423000543/type/journal_article |