Achieving superelasticity in additively manufactured Ni-lean NiTi by crystallographic design
Superelastic metallic materials possessing large recoverable strains are widely used in automotive, aerospace and energy conversion industries. Superelastic materials working at high temperatures and with a wide temperature range are increasingly required for demanding applications. Until recently,...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2023-06-01
|
Series: | Materials & Design |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S0264127523003647 |