Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells
Summary: Objectives: Pyridoxal 5ʹ-phosphate (PLP) is an active and major form of vitamin B6 (VB6) in the body. PLP is essential as a cofactor for many enzymes involved in amino acid metabolism, and VB6 deficiency is associated with neurological disorders, such as epileptic-like symptoms, depression...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-06-01
|
Series: | Clinical Nutrition Open Science |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2667268524000251 |
_version_ | 1831868855102734336 |
---|---|
author | Nana Itoh Shigenobu Matsumura Toshio Iwaki Shigeo Takenaka Hiroaki Kanouchi |
author_facet | Nana Itoh Shigenobu Matsumura Toshio Iwaki Shigeo Takenaka Hiroaki Kanouchi |
author_sort | Nana Itoh |
collection | DOAJ |
description | Summary: Objectives: Pyridoxal 5ʹ-phosphate (PLP) is an active and major form of vitamin B6 (VB6) in the body. PLP is essential as a cofactor for many enzymes involved in amino acid metabolism, and VB6 deficiency is associated with neurological disorders, such as epileptic-like symptoms, depression and confusion. However, the link between neuronal dysfunction and VB6 deficiency is unclear. In this study, we investigated how neuronal cells are affected by low cellular PLP levels using the neuroblastoma SH-SY5Y cell line. Methods: SH-SY5Y cells were cultured in pyridoxine-free medium supplemented with 10% fetal bovine serum and cell viability, intracellular PLP concentration, and metabolites were evaluated. Pyridoxine-free medium supplemented with 10% FBS contained 3 nM of PLP derived from FBS. Media containing various concentration of PLP were prepared using pyridoxine-free medium. Additionally, reactive oxygen species level and cell viability were assessed when cells were treated with 100 μM of hydrogen peroxide in media containing different concentrations of PLP. Results: SH-SY5Y cells had a decreased intracellular PLP level of 38 pmol/mg protein but proliferated when cells were cultured in the PLP-non-added medium. Metabolome analysis revealed the levels of neurotransmitters such as dopamine, norepinephrine, and 4-aminobutyric acid were decreased in cells cultured in the PLP-non-added medium compared with the PLP-added medium. The concentration of glutathione, an antioxidant, was also reduced. Furthermore, when cells were cultured in the PLP-non-added medium, hydrogen peroxide treatment reduced cell viability and increased intracellular reactive oxygen species levels in a concentration-dependent manner. These findings show that a growth environment low in VB6 decreases cellular glutathione and reduces resistance to oxidative stress. Conclusions: Overall, these findings show that low VB6 not only reduces neurotransmitter production, but also reduces glutathione levels, rendering cells more susceptible to oxidative stress and increasing the risk of neurodegenerative changes. |
first_indexed | 2024-04-24T12:50:25Z |
format | Article |
id | doaj.art-cda58d8e634b4c4da9788a0d99292478 |
institution | Directory Open Access Journal |
issn | 2667-2685 |
language | English |
last_indexed | 2025-03-21T19:01:09Z |
publishDate | 2024-06-01 |
publisher | Elsevier |
record_format | Article |
series | Clinical Nutrition Open Science |
spelling | doaj.art-cda58d8e634b4c4da9788a0d992924782024-06-05T04:41:48ZengElsevierClinical Nutrition Open Science2667-26852024-06-0155123135Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cellsNana Itoh0Shigenobu Matsumura1Toshio Iwaki2Shigeo Takenaka3Hiroaki Kanouchi4Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, JapanDepartment of Clinical Nutrition, Osaka Metropolitan University, Osaka, JapanDepartment of Clinical Nutrition, Osaka Metropolitan University, Osaka, JapanDepartment of Clinical Nutrition, Osaka Metropolitan University, Osaka, JapanCorresponding author. 3-7-30 Habikino, Osaka 583-8555, Japan.; Department of Clinical Nutrition, Osaka Metropolitan University, Osaka, JapanSummary: Objectives: Pyridoxal 5ʹ-phosphate (PLP) is an active and major form of vitamin B6 (VB6) in the body. PLP is essential as a cofactor for many enzymes involved in amino acid metabolism, and VB6 deficiency is associated with neurological disorders, such as epileptic-like symptoms, depression and confusion. However, the link between neuronal dysfunction and VB6 deficiency is unclear. In this study, we investigated how neuronal cells are affected by low cellular PLP levels using the neuroblastoma SH-SY5Y cell line. Methods: SH-SY5Y cells were cultured in pyridoxine-free medium supplemented with 10% fetal bovine serum and cell viability, intracellular PLP concentration, and metabolites were evaluated. Pyridoxine-free medium supplemented with 10% FBS contained 3 nM of PLP derived from FBS. Media containing various concentration of PLP were prepared using pyridoxine-free medium. Additionally, reactive oxygen species level and cell viability were assessed when cells were treated with 100 μM of hydrogen peroxide in media containing different concentrations of PLP. Results: SH-SY5Y cells had a decreased intracellular PLP level of 38 pmol/mg protein but proliferated when cells were cultured in the PLP-non-added medium. Metabolome analysis revealed the levels of neurotransmitters such as dopamine, norepinephrine, and 4-aminobutyric acid were decreased in cells cultured in the PLP-non-added medium compared with the PLP-added medium. The concentration of glutathione, an antioxidant, was also reduced. Furthermore, when cells were cultured in the PLP-non-added medium, hydrogen peroxide treatment reduced cell viability and increased intracellular reactive oxygen species levels in a concentration-dependent manner. These findings show that a growth environment low in VB6 decreases cellular glutathione and reduces resistance to oxidative stress. Conclusions: Overall, these findings show that low VB6 not only reduces neurotransmitter production, but also reduces glutathione levels, rendering cells more susceptible to oxidative stress and increasing the risk of neurodegenerative changes.http://www.sciencedirect.com/science/article/pii/S2667268524000251Pyridoxal 5ʹ-phosphateSH-SY5YNeurotransmitterGlutathioneOxidative stress |
spellingShingle | Nana Itoh Shigenobu Matsumura Toshio Iwaki Shigeo Takenaka Hiroaki Kanouchi Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells Clinical Nutrition Open Science Pyridoxal 5ʹ-phosphate SH-SY5Y Neurotransmitter Glutathione Oxidative stress |
title | Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells |
title_full | Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells |
title_fullStr | Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells |
title_full_unstemmed | Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells |
title_short | Low cellular pyridoxal 5ʹ-phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in SH-SY5Y cells |
title_sort | low cellular pyridoxal 5 phosphate levels decrease neurotransmitter and glutathione concentrations and increase susceptibility to hydrogen peroxide toxicity in sh sy5y cells |
topic | Pyridoxal 5ʹ-phosphate SH-SY5Y Neurotransmitter Glutathione Oxidative stress |
url | http://www.sciencedirect.com/science/article/pii/S2667268524000251 |
work_keys_str_mv | AT nanaitoh lowcellularpyridoxal5ʹphosphatelevelsdecreaseneurotransmitterandglutathioneconcentrationsandincreasesusceptibilitytohydrogenperoxidetoxicityinshsy5ycells AT shigenobumatsumura lowcellularpyridoxal5ʹphosphatelevelsdecreaseneurotransmitterandglutathioneconcentrationsandincreasesusceptibilitytohydrogenperoxidetoxicityinshsy5ycells AT toshioiwaki lowcellularpyridoxal5ʹphosphatelevelsdecreaseneurotransmitterandglutathioneconcentrationsandincreasesusceptibilitytohydrogenperoxidetoxicityinshsy5ycells AT shigeotakenaka lowcellularpyridoxal5ʹphosphatelevelsdecreaseneurotransmitterandglutathioneconcentrationsandincreasesusceptibilitytohydrogenperoxidetoxicityinshsy5ycells AT hiroakikanouchi lowcellularpyridoxal5ʹphosphatelevelsdecreaseneurotransmitterandglutathioneconcentrationsandincreasesusceptibilitytohydrogenperoxidetoxicityinshsy5ycells |