Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))

具有良好传递性的区组设计的分类问题是组合设计研究的活跃领域.利用置换群的次轨道和典型群的子群结构,研究区传递2-(v,k,1)设计的分类.特别地,讨论了自同构群的基柱为典型单群的区传递,点本原但非旗传递的2—(v,6,1)设计.设D为一个2—(v,6,1)设计,G≤Aut(D)是区传递、点本原但非旗传递的,若v为奇数,则G的基柱Soc(G)不是有限域GF(q)上的典型单群PSpn(q)....

Full description

Bibliographic Details
Main Authors: ZHANGCaihong(张彩红), HANGuangguo(韩广国), CHENLihong(陈丽虹), ZHANGHuiling(张惠玲)
Format: Article
Language:zho
Published: Zhejiang University Press 2018-11-01
Series:Zhejiang Daxue xuebao. Lixue ban
Subjects:
Online Access:https://doi.org/10.3785/j.issn.1008-9497.2018.06.003
_version_ 1797235732321927168
author ZHANGCaihong(张彩红)
HANGuangguo(韩广国)
CHENLihong(陈丽虹)
ZHANGHuiling(张惠玲)
author_facet ZHANGCaihong(张彩红)
HANGuangguo(韩广国)
CHENLihong(陈丽虹)
ZHANGHuiling(张惠玲)
author_sort ZHANGCaihong(张彩红)
collection DOAJ
description 具有良好传递性的区组设计的分类问题是组合设计研究的活跃领域.利用置换群的次轨道和典型群的子群结构,研究区传递2-(v,k,1)设计的分类.特别地,讨论了自同构群的基柱为典型单群的区传递,点本原但非旗传递的2—(v,6,1)设计.设D为一个2—(v,6,1)设计,G≤Aut(D)是区传递、点本原但非旗传递的,若v为奇数,则G的基柱Soc(G)不是有限域GF(q)上的典型单群PSpn(q).
first_indexed 2024-04-24T16:52:38Z
format Article
id doaj.art-ce6d6fc4c811465280193cdcf6cfb89b
institution Directory Open Access Journal
issn 1008-9497
language zho
last_indexed 2024-04-24T16:52:38Z
publishDate 2018-11-01
publisher Zhejiang University Press
record_format Article
series Zhejiang Daxue xuebao. Lixue ban
spelling doaj.art-ce6d6fc4c811465280193cdcf6cfb89b2024-03-29T01:58:38ZzhoZhejiang University PressZhejiang Daxue xuebao. Lixue ban1008-94972018-11-0145666166410.3785/j.issn.1008-9497.2018.06.003Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))ZHANGCaihong(张彩红)0https://orcid.org/0000-0002-3523-7310HANGuangguo(韩广国)1https://orcid.org/0000-0002-5439-2868CHENLihong(陈丽虹)2ZHANGHuiling(张惠玲)3School of Science, Hangzhou Dianzi University, Hangzhou 310018, China(杭州电子科技大学理学院数学研究所,浙江 杭州 310018)School of Science, Hangzhou Dianzi University, Hangzhou 310018, China(杭州电子科技大学理学院数学研究所,浙江 杭州 310018)School of Science, Hangzhou Dianzi University, Hangzhou 310018, China(杭州电子科技大学理学院数学研究所,浙江 杭州 310018)School of Science, Hangzhou Dianzi University, Hangzhou 310018, China(杭州电子科技大学理学院数学研究所,浙江 杭州 310018)具有良好传递性的区组设计的分类问题是组合设计研究的活跃领域.利用置换群的次轨道和典型群的子群结构,研究区传递2-(v,k,1)设计的分类.特别地,讨论了自同构群的基柱为典型单群的区传递,点本原但非旗传递的2—(v,6,1)设计.设D为一个2—(v,6,1)设计,G≤Aut(D)是区传递、点本原但非旗传递的,若v为奇数,则G的基柱Soc(G)不是有限域GF(q)上的典型单群PSpn(q).https://doi.org/10.3785/j.issn.1008-9497.2018.06.003设计自同构群区传递点本原典型单群
spellingShingle ZHANGCaihong(张彩红)
HANGuangguo(韩广国)
CHENLihong(陈丽虹)
ZHANGHuiling(张惠玲)
Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
Zhejiang Daxue xuebao. Lixue ban
设计
自同构群
区传递
点本原
典型单群
title Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
title_full Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
title_fullStr Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
title_full_unstemmed Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
title_short Block transitive 2—(v,6,1) designs and the classical simple groups PSpn (q)(区传递的2-(v,6,1)设计与典型单群PSpn(q))
title_sort block transitive 2 v 6 1 designs and the classical simple groups pspn q 区传递的2 v 6 1 设计与典型单群pspn q
topic 设计
自同构群
区传递
点本原
典型单群
url https://doi.org/10.3785/j.issn.1008-9497.2018.06.003
work_keys_str_mv AT zhangcaihongzhāngcǎihóng blocktransitive2v61designsandtheclassicalsimplegroupspspnqqūchuándìde2v61shèjìyǔdiǎnxíngdānqúnpspnq
AT hanguangguohánguǎngguó blocktransitive2v61designsandtheclassicalsimplegroupspspnqqūchuándìde2v61shèjìyǔdiǎnxíngdānqúnpspnq
AT chenlihongchénlìhóng blocktransitive2v61designsandtheclassicalsimplegroupspspnqqūchuándìde2v61shèjìyǔdiǎnxíngdānqúnpspnq
AT zhanghuilingzhānghuìlíng blocktransitive2v61designsandtheclassicalsimplegroupspspnqqūchuándìde2v61shèjìyǔdiǎnxíngdānqúnpspnq