MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC
Abstract Background Mediator complex subunit 12 (MED12) is an essential hub for transcriptional regulation, in which mutations and overexpression were reported to be associated with several kinds of malignancies. Nevertheless, the role of MED12 in non-small cell lung cancer (NSCLC) remains to be elu...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2019-05-01
|
Series: | Molecular Cancer |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s12943-019-1020-4 |
_version_ | 1819146942298456064 |
---|---|
author | Meng Xu Fang Wang Guibo Li Xiaokun Wang Xiaona Fang Haoxuan Jin Zhen Chen Jianye Zhang Liwu Fu |
author_facet | Meng Xu Fang Wang Guibo Li Xiaokun Wang Xiaona Fang Haoxuan Jin Zhen Chen Jianye Zhang Liwu Fu |
author_sort | Meng Xu |
collection | DOAJ |
description | Abstract Background Mediator complex subunit 12 (MED12) is an essential hub for transcriptional regulation, in which mutations and overexpression were reported to be associated with several kinds of malignancies. Nevertheless, the role of MED12 in non-small cell lung cancer (NSCLC) remains to be elucidated. Methods MED12 mutation was detected by Next-generation sequencing. The expression of MED12 in 179 human NSCLC tissue samples and 73 corresponding adjacent normal lung tissue samples was measured by immunohistochemistry (IHC). CRISPR-Cas9 was used to knock out MED12 in PC9 and SPC-A1 cells. MED12 rescued stable cell lines were generated by lentivirus infection. We traced cell division process by live cell imaging. The molecular mechanism of aborted cytokinesis resulted by MED12 knockout was investigated by RNA-seq. Effects of MED12 deletion on the proliferation of NSCLC cells were determined by MTT assay and Colony-formation assay in vitro and xenograft tumor model in nude mouse. Cell senescence was measured by SA-β-gal staining. Results In our study, no MED12 exon mutation was detected in NSCLC samples, whereas we found that MED12 was overexpressed in human NSCLC tissues, which positively correlated with the tumor volume and adversely affected patient survival. Furthermore, knockout MED12 in NSCLC cell lines resulted in cytokinesis failure, displayed a multinuclear phenotype, and disposed to senescence, and become non-viable. Lack of MED12 decreased the proliferative potential of NSCLC cells and limited the tumor growth in vivo. Mechanism investigations revealed that MED12 knockout activated LIMK2, caused aberrant actin cytoskeleton remodeling, and disrupted the abscission of intercellular bridge, which led to the cytokinesis failure. Reconstitution of exogenous MED12 restored actin dynamics, normal cytokinesis and cell proliferation capacity in MED12 knockout cells. Conclusions These results revealed a novel role of MED12 as an important regulator for maintaining accurate cytokinesis and survival in NSCLC cells, which may offer a therapeutic strategy to control tumor growth for NSCLC patients especially those highly expressed MED12. |
first_indexed | 2024-12-22T13:21:56Z |
format | Article |
id | doaj.art-ce7a2d5fffd3487ba1d8bb8a8e0bf22b |
institution | Directory Open Access Journal |
issn | 1476-4598 |
language | English |
last_indexed | 2024-12-22T13:21:56Z |
publishDate | 2019-05-01 |
publisher | BMC |
record_format | Article |
series | Molecular Cancer |
spelling | doaj.art-ce7a2d5fffd3487ba1d8bb8a8e0bf22b2022-12-21T18:24:27ZengBMCMolecular Cancer1476-45982019-05-0118111410.1186/s12943-019-1020-4MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLCMeng Xu0Fang Wang1Guibo Li2Xiaokun Wang3Xiaona Fang4Haoxuan Jin5Zhen Chen6Jianye Zhang7Liwu Fu8Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineBeijing Genomics Institute (BGI)-ShenzhenSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineBeijing Genomics Institute (BGI)-ShenzhenSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSchool of Pharmaceutical Sciences, Guangzhou Medical UniversitySun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineAbstract Background Mediator complex subunit 12 (MED12) is an essential hub for transcriptional regulation, in which mutations and overexpression were reported to be associated with several kinds of malignancies. Nevertheless, the role of MED12 in non-small cell lung cancer (NSCLC) remains to be elucidated. Methods MED12 mutation was detected by Next-generation sequencing. The expression of MED12 in 179 human NSCLC tissue samples and 73 corresponding adjacent normal lung tissue samples was measured by immunohistochemistry (IHC). CRISPR-Cas9 was used to knock out MED12 in PC9 and SPC-A1 cells. MED12 rescued stable cell lines were generated by lentivirus infection. We traced cell division process by live cell imaging. The molecular mechanism of aborted cytokinesis resulted by MED12 knockout was investigated by RNA-seq. Effects of MED12 deletion on the proliferation of NSCLC cells were determined by MTT assay and Colony-formation assay in vitro and xenograft tumor model in nude mouse. Cell senescence was measured by SA-β-gal staining. Results In our study, no MED12 exon mutation was detected in NSCLC samples, whereas we found that MED12 was overexpressed in human NSCLC tissues, which positively correlated with the tumor volume and adversely affected patient survival. Furthermore, knockout MED12 in NSCLC cell lines resulted in cytokinesis failure, displayed a multinuclear phenotype, and disposed to senescence, and become non-viable. Lack of MED12 decreased the proliferative potential of NSCLC cells and limited the tumor growth in vivo. Mechanism investigations revealed that MED12 knockout activated LIMK2, caused aberrant actin cytoskeleton remodeling, and disrupted the abscission of intercellular bridge, which led to the cytokinesis failure. Reconstitution of exogenous MED12 restored actin dynamics, normal cytokinesis and cell proliferation capacity in MED12 knockout cells. Conclusions These results revealed a novel role of MED12 as an important regulator for maintaining accurate cytokinesis and survival in NSCLC cells, which may offer a therapeutic strategy to control tumor growth for NSCLC patients especially those highly expressed MED12.http://link.springer.com/article/10.1186/s12943-019-1020-4MED12CytokinesisActinLIMK2NSCLC |
spellingShingle | Meng Xu Fang Wang Guibo Li Xiaokun Wang Xiaona Fang Haoxuan Jin Zhen Chen Jianye Zhang Liwu Fu MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC Molecular Cancer MED12 Cytokinesis Actin LIMK2 NSCLC |
title | MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC |
title_full | MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC |
title_fullStr | MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC |
title_full_unstemmed | MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC |
title_short | MED12 exerts an emerging role in actin-mediated cytokinesis via LIMK2/cofilin pathway in NSCLC |
title_sort | med12 exerts an emerging role in actin mediated cytokinesis via limk2 cofilin pathway in nsclc |
topic | MED12 Cytokinesis Actin LIMK2 NSCLC |
url | http://link.springer.com/article/10.1186/s12943-019-1020-4 |
work_keys_str_mv | AT mengxu med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT fangwang med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT guiboli med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT xiaokunwang med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT xiaonafang med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT haoxuanjin med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT zhenchen med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT jianyezhang med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc AT liwufu med12exertsanemergingroleinactinmediatedcytokinesisvialimk2cofilinpathwayinnsclc |