Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers.
The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing sta...
Principais autores: | , , , , , , , , , , |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
Public Library of Science (PLoS)
2014-01-01
|
coleção: | PLoS ONE |
Acesso em linha: | http://europepmc.org/articles/PMC3907565?pdf=render |