Glaucomatous patterns in Frequency Doubling Technology (FDT) perimetry data identified by unsupervised machine learning classifiers.

The variational Bayesian independent component analysis-mixture model (VIM), an unsupervised machine-learning classifier, was used to automatically separate Matrix Frequency Doubling Technology (FDT) perimetry data into clusters of healthy and glaucomatous eyes, and to identify axes representing sta...

ver descrição completa

Detalhes bibliográficos
Principais autores: Christopher Bowd, Robert N Weinreb, Madhusudhanan Balasubramanian, Intae Lee, Giljin Jang, Siamak Yousefi, Linda M Zangwill, Felipe A Medeiros, Christopher A Girkin, Jeffrey M Liebmann, Michael H Goldbaum
Formato: Artigo
Idioma:English
Publicado em: Public Library of Science (PLoS) 2014-01-01
coleção:PLoS ONE
Acesso em linha:http://europepmc.org/articles/PMC3907565?pdf=render