Targeted in vivo extracellular matrix formation promotes neovascularization in a rodent model of myocardial infarction.

The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair.Four peptides, 2 derived from fibronectin and 2 d...

Full description

Bibliographic Details
Main Authors: Shirley S Mihardja, Dongwei Gao, Richard E Sievers, Qizhi Fang, Jinjin Feng, Jianming Wang, Henry F Vanbrocklin, James W Larrick, Manley Huang, Michael Dae, Randall J Lee
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2010-04-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2860995?pdf=render
Description
Summary:The extracellular matrix plays an important role in tissue regeneration. We investigated whether extracellular matrix protein fragments could be targeted with antibodies to ischemically injured myocardium to promote angiogenesis and myocardial repair.Four peptides, 2 derived from fibronectin and 2 derived from Type IV Collagen, were assessed for in vitro and in vivo tendencies for angiogenesis. Three of the four peptides--Hep I, Hep III, RGD--were identified and shown to increase endothelial cell attachment, proliferation, migration and cell activation in vitro. By chemically conjugating these peptides to an anti-myosin heavy chain antibody, the peptides could be administered intravenously and specifically targeted to the site of the myocardial infarction. When administered into Sprague-Dawley rats that underwent ischemia-reperfusion myocardial infarction, these peptides produced statistically significantly higher levels of angiogenesis and arteriogenesis 6 weeks post treatment.We demonstrated that antibody-targeted ECM-derived peptides alone can be used to sufficiently alter the extracellular matrix microenvironment to induce a dramatic angiogenic response in the myocardial infarct area. Our results indicate a potentially new non-invasive strategy for repairing damaged tissue, as well as a novel tool for investigating in vivo cell biology.
ISSN:1932-6203