Tracking Control for a Lower Extremity Exoskeleton Based on Adaptive Dynamic Programing

The utilization of lower extremity exoskeletons has witnessed a growing presence across diverse domains such as the military, medical treatment, and rehabilitation. This paper introduces a novel design of a lower extremity exoskeleton specifically tailored for individuals engaged in heavy object car...

Full description

Bibliographic Details
Main Authors: Qiying Su, Zhongcai Pei, Zhiyong Tang
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/8/4/353
Description
Summary:The utilization of lower extremity exoskeletons has witnessed a growing presence across diverse domains such as the military, medical treatment, and rehabilitation. This paper introduces a novel design of a lower extremity exoskeleton specifically tailored for individuals engaged in heavy object carrying tasks. The exoskeleton incorporates an impressive 12 degrees of freedom (DOF), with four of them being effectively controlled through hydraulic cylinders. To achieve optimal control of this intricate lower extremity exoskeleton system, the authors propose an adaptive dynamic programming (ADP) algorithm. Several crucial components are established to implement this control scheme. These include the formulation of the state equation for the lower extremity exoskeleton system, which is well-suited for the ADP algorithm. Additionally, a corresponding performance index function based on the tracking error is devised, along with the game algebraic Riccati equation. By employing the value iteration ADP scheme, the lower extremity exoskeleton demonstrates highly effective tracking control. This research not only highlights the potential of the proposed control approach but also showcases its ability to enhance the overall performance and functionality of lower extremity exoskeletons, particularly in scenarios involving heavy object carrying. Overall, this study contributes to the advancement of lower extremity exoskeleton technology and offers valuable insights into the application of ADP algorithms for achieving precise and efficient control in demanding tasks.
ISSN:2313-7673