Ramanujan-type congruences modulo 4 for partitions into distinct parts
In this paper, we consider the partition function Q(n) counting the partitions of n into distinct parts and investigate congruence identities of the form Q(p⋅n+p2-124)≡0 (mod4),Q\left( {p \cdot n + {{{p^2} - 1} \over {24}}} \right) \equiv 0\,\,\,\left( {\bmod 4} \right), where p ⩾ 5 is a prime....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Sciendo
2022-09-01
|
Series: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
Subjects: | |
Online Access: | https://doi.org/10.2478/auom-2022-0040 |