Ramanujan-type congruences modulo 4 for partitions into distinct parts

In this paper, we consider the partition function Q(n) counting the partitions of n into distinct parts and investigate congruence identities of the form Q(p⋅n+p2-124)≡0   (mod4),Q\left( {p \cdot n + {{{p^2} - 1} \over {24}}} \right) \equiv 0\,\,\,\left( {\bmod 4} \right), where p ⩾ 5 is a prime....

Full description

Bibliographic Details
Main Author: Merca Mircea
Format: Article
Language:English
Published: Sciendo 2022-09-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2022-0040
_version_ 1811194309570985984
author Merca Mircea
author_facet Merca Mircea
author_sort Merca Mircea
collection DOAJ
description In this paper, we consider the partition function Q(n) counting the partitions of n into distinct parts and investigate congruence identities of the form Q(p⋅n+p2-124)≡0   (mod4),Q\left( {p \cdot n + {{{p^2} - 1} \over {24}}} \right) \equiv 0\,\,\,\left( {\bmod 4} \right), where p ⩾ 5 is a prime.
first_indexed 2024-04-12T00:23:44Z
format Article
id doaj.art-cf171f6c77f843f3a63cc42391bb62f0
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-04-12T00:23:44Z
publishDate 2022-09-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-cf171f6c77f843f3a63cc42391bb62f02022-12-22T03:55:36ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352022-09-0130318519910.2478/auom-2022-0040Ramanujan-type congruences modulo 4 for partitions into distinct partsMerca Mircea0Department of Mathematical Methods and Models, University POLITEHNICA of Bucharest, Splaiul Independentei 313, 060042Bucharest, Romania.In this paper, we consider the partition function Q(n) counting the partitions of n into distinct parts and investigate congruence identities of the form Q(p⋅n+p2-124)≡0   (mod4),Q\left( {p \cdot n + {{{p^2} - 1} \over {24}}} \right) \equiv 0\,\,\,\left( {\bmod 4} \right), where p ⩾ 5 is a prime.https://doi.org/10.2478/auom-2022-0040partitionscongruencesdivisorsprimary 11p83secondary 11p81; 11p82
spellingShingle Merca Mircea
Ramanujan-type congruences modulo 4 for partitions into distinct parts
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
partitions
congruences
divisors
primary 11p83
secondary 11p81; 11p82
title Ramanujan-type congruences modulo 4 for partitions into distinct parts
title_full Ramanujan-type congruences modulo 4 for partitions into distinct parts
title_fullStr Ramanujan-type congruences modulo 4 for partitions into distinct parts
title_full_unstemmed Ramanujan-type congruences modulo 4 for partitions into distinct parts
title_short Ramanujan-type congruences modulo 4 for partitions into distinct parts
title_sort ramanujan type congruences modulo 4 for partitions into distinct parts
topic partitions
congruences
divisors
primary 11p83
secondary 11p81; 11p82
url https://doi.org/10.2478/auom-2022-0040
work_keys_str_mv AT mercamircea ramanujantypecongruencesmodulo4forpartitionsintodistinctparts