Robust 2DPCA With <inline-formula> <tex-math notation="LaTeX">${F}$ </tex-math></inline-formula>-Norm Minimization
While feature extraction based on two-dimensional principal component analysis (2DPCA) is widely used in image recognition, such a method usually fails to handle the noise and outliers, because adopted F-norm square actually exaggerates the effect of outliers. To tackle the aforementioned problem, w...
Autori principali: | , |
---|---|
Natura: | Articolo |
Lingua: | English |
Pubblicazione: |
IEEE
2019-01-01
|
Serie: | IEEE Access |
Soggetti: | |
Accesso online: | https://ieeexplore.ieee.org/document/8721629/ |