Modelling of the dynamic polarizability of macromolecules for single-molecule optical biosensing

Abstract The structural dynamics of macromolecules is important for most microbiological processes, from protein folding to the origins of neurodegenerative disorders. Noninvasive measurements of these dynamics are highly challenging. Recently, optical sensors have been shown to allow noninvasive ti...

Full description

Bibliographic Details
Main Authors: Larnii S. Booth, Eloise V. Browne, Nicolas P. Mauranyapin, Lars S. Madsen, Shelley Barfoot, Alan Mark, Warwick P. Bowen
Format: Article
Language:English
Published: Nature Portfolio 2022-02-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-05586-0
Description
Summary:Abstract The structural dynamics of macromolecules is important for most microbiological processes, from protein folding to the origins of neurodegenerative disorders. Noninvasive measurements of these dynamics are highly challenging. Recently, optical sensors have been shown to allow noninvasive time-resolved measurements of the dynamic polarizability of single-molecules. Here we introduce a method to efficiently predict the dynamic polarizability from the atomic configuration of a given macromolecule. This provides a means to connect the measured dynamic polarizability to the underlying structure of the molecule, and therefore to connect temporal measurements to structural dynamics. To illustrate the methodology we calculate the change in polarizability as a function of time based on conformations extracted from molecular dynamics simulations and using different conformations of motor proteins solved crystalographically. This allows us to quantify the magnitude of the changes in polarizablity due to thermal and functional motions.
ISSN:2045-2322