Summary: | Abstract Background OTUB1 (ovarian tumor domain protease domain-containing ubiquitin aldehyde-binding proteins)-mediated deubiquitination of FOXM1 (Forkhead box M1) participates in carcinogenesis of various tumors. We aim to investigate the effect and mechanism of OTUB1/FOXM1 on RCC (renal cell carcinoma) progression. Expression levels of OTUB1 in RCC tissues and cell lines were examined by qRT-PCR (quantitative real-time polymerase chain reaction) and immunohistochemistry. Cell proliferation was measured with CCK8 (Cell Counting Kit-8) and colony formation assays. Wound healing and transwell assays were used to determine cell migration and invasion, respectively. The effect of OTUB1 on FOXM1 ubiquitination was examined by Immunoprecipitation. Western blot was used to uncover the underlying mechanism. In vivo subcutaneous xenotransplanted tumor model combined with immunohistochemistry and western blot were used to examine the tumorigenic function of OTUB1. Results OTUB1 was up-regulated in RCC tissues and cell lines, and was associated with poor prognosis of RCC patients. Knockdown of OTUB1 inhibited cell viability and proliferation, as well as migration and invasion of RCC cells. Mechanistically, knockdown of OTUB1 down-regulated FOXM1 expression by promoting its ubiquitination. Down-regulation of FOXM1 inhibited ECT2 (epithelial cell transforming 2)-mediated Rho signaling. Moreover, the inhibition of RCC progression caused by OTUB1 knockdown was reversed by FOXM1 over-expression. In vivo subcutaneous xenotransplanted tumor model also revealed that knockdown of OTUB1 could suppress in vivo RCC growth via down-regulation of FOXM1-mediated ECT2 expression. Conclusions OTUB1-mediated deubiquitination of FOXM1 up-regulates ECT-2 to promote tumor progression in RCC, providing a new potential therapeutic target for RCC treatment.
|