TFC-GCN: Lightweight Temporal Feature Cross-Extraction Graph Convolutional Network for Skeleton-Based Action Recognition
For skeleton-based action recognition, graph convolutional networks (GCN) have absolute advantages. Existing state-of-the-art (SOTA) methods tended to focus on extracting and identifying features from all bones and joints. However, they ignored many new input features which could be discovered. More...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-06-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/23/12/5593 |