Exploring Latent Information for Unsupervised Person Re-Identification by Discriminative Learning Networks
For unsupervised domain adaption in person re-identification (Re-ID) tasks, the generally used label estimation approaches simply use the global features or the uniform part features. They often neglect the variations of samples having the same identity caused by occlusion, misalignment and uncontro...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9024018/ |