Analysis of photoelastic properties of monocrystalline silicon

<p>Photoelasticity is considered a useful measurement tool for the non-destructive and contactless determination of mechanical stresses or strains in the production of silicon wafers. It describes a change in the indices of refraction of a material when the material is mechanically loaded. As...

Full description

Bibliographic Details
Main Authors: M. Stoehr, G. Gerlach, T. Härtling, S. Schoenfelder
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Journal of Sensors and Sensor Systems
Online Access:https://jsss.copernicus.org/articles/9/209/2020/jsss-9-209-2020.pdf
_version_ 1811340196880318464
author M. Stoehr
G. Gerlach
T. Härtling
S. Schoenfelder
author_facet M. Stoehr
G. Gerlach
T. Härtling
S. Schoenfelder
author_sort M. Stoehr
collection DOAJ
description <p>Photoelasticity is considered a useful measurement tool for the non-destructive and contactless determination of mechanical stresses or strains in the production of silicon wafers. It describes a change in the indices of refraction of a material when the material is mechanically loaded. As silicon has a diamond lattice structure, the stress-dependent change in the refractive indices varies with the loading direction. In this work, an anisotropic stress-optic law is derived, and the corresponding stress-optical parameters are measured using a Brazilian disc test. The parameters were determined to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">11</mn></msub><mo>-</mo><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">12</mn></msub><mo>)</mo><mo>=</mo><mn mathvariant="normal">14.4</mn><mo>⋅</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">7</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="114pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="73f78fd9f4f70b6d679a30b05037b11b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jsss-9-209-2020-ie00001.svg" width="114pt" height="15pt" src="jsss-9-209-2020-ie00001.png"/></svg:svg></span></span>&thinsp;MPa<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">44</mn></msub><mo>=</mo><mn mathvariant="normal">9.4</mn><mo>⋅</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">7</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="07fb3e6ffb9fda80dab331b044aa14b1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jsss-9-209-2020-ie00002.svg" width="74pt" height="15pt" src="jsss-9-209-2020-ie00002.png"/></svg:svg></span></span>&thinsp;MPa<span class="inline-formula"><sup>−1</sup></span>. The results of this work are compared to previous works found in the literature, and the deviations are discussed.</p>
first_indexed 2024-04-13T18:38:21Z
format Article
id doaj.art-d2353c07a2764eae93674c5d29d2dc11
institution Directory Open Access Journal
issn 2194-8771
2194-878X
language English
last_indexed 2024-04-13T18:38:21Z
publishDate 2020-07-01
publisher Copernicus Publications
record_format Article
series Journal of Sensors and Sensor Systems
spelling doaj.art-d2353c07a2764eae93674c5d29d2dc112022-12-22T02:34:49ZengCopernicus PublicationsJournal of Sensors and Sensor Systems2194-87712194-878X2020-07-01920921710.5194/jsss-9-209-2020Analysis of photoelastic properties of monocrystalline siliconM. Stoehr0G. Gerlach1T. Härtling2S. Schoenfelder3Leipzig University of Applied Sciences, Faculty of Engineering Sciences, Leipzig, GermanyTechnische Universität Dresden, Department of Electrical and Computer Engineering, Institute of Solid State Electronics, Dresden, GermanyTechnische Universität Dresden, Department of Electrical and Computer Engineering, Institute of Solid State Electronics, Dresden, GermanyLeipzig University of Applied Sciences, Faculty of Engineering Sciences, Leipzig, Germany<p>Photoelasticity is considered a useful measurement tool for the non-destructive and contactless determination of mechanical stresses or strains in the production of silicon wafers. It describes a change in the indices of refraction of a material when the material is mechanically loaded. As silicon has a diamond lattice structure, the stress-dependent change in the refractive indices varies with the loading direction. In this work, an anisotropic stress-optic law is derived, and the corresponding stress-optical parameters are measured using a Brazilian disc test. The parameters were determined to be <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M1" display="inline" overflow="scroll" dspmath="mathml"><mrow><mo>(</mo><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">11</mn></msub><mo>-</mo><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">12</mn></msub><mo>)</mo><mo>=</mo><mn mathvariant="normal">14.4</mn><mo>⋅</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">7</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="114pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="73f78fd9f4f70b6d679a30b05037b11b"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jsss-9-209-2020-ie00001.svg" width="114pt" height="15pt" src="jsss-9-209-2020-ie00001.png"/></svg:svg></span></span>&thinsp;MPa<span class="inline-formula"><sup>−1</sup></span> and <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi mathvariant="italic">π</mi><mn mathvariant="normal">44</mn></msub><mo>=</mo><mn mathvariant="normal">9.4</mn><mo>⋅</mo><msup><mn mathvariant="normal">10</mn><mrow><mo>-</mo><mn mathvariant="normal">7</mn></mrow></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="74pt" height="15pt" class="svg-formula" dspmath="mathimg" md5hash="07fb3e6ffb9fda80dab331b044aa14b1"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jsss-9-209-2020-ie00002.svg" width="74pt" height="15pt" src="jsss-9-209-2020-ie00002.png"/></svg:svg></span></span>&thinsp;MPa<span class="inline-formula"><sup>−1</sup></span>. The results of this work are compared to previous works found in the literature, and the deviations are discussed.</p>https://jsss.copernicus.org/articles/9/209/2020/jsss-9-209-2020.pdf
spellingShingle M. Stoehr
G. Gerlach
T. Härtling
S. Schoenfelder
Analysis of photoelastic properties of monocrystalline silicon
Journal of Sensors and Sensor Systems
title Analysis of photoelastic properties of monocrystalline silicon
title_full Analysis of photoelastic properties of monocrystalline silicon
title_fullStr Analysis of photoelastic properties of monocrystalline silicon
title_full_unstemmed Analysis of photoelastic properties of monocrystalline silicon
title_short Analysis of photoelastic properties of monocrystalline silicon
title_sort analysis of photoelastic properties of monocrystalline silicon
url https://jsss.copernicus.org/articles/9/209/2020/jsss-9-209-2020.pdf
work_keys_str_mv AT mstoehr analysisofphotoelasticpropertiesofmonocrystallinesilicon
AT ggerlach analysisofphotoelasticpropertiesofmonocrystallinesilicon
AT thartling analysisofphotoelasticpropertiesofmonocrystallinesilicon
AT sschoenfelder analysisofphotoelasticpropertiesofmonocrystallinesilicon