A generalization of Kruskal’s theorem on tensor decomposition

Kruskal’s theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a ‘splitting theorem’ for sets of product tensors, in which the k-rank condition of Kruskal’s theorem is weakened to the standard...

Full description

Bibliographic Details
Main Authors: Benjamin Lovitz, Fedor Petrov
Format: Article
Language:English
Published: Cambridge University Press 2023-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509423000208/type/journal_article