A Classification System for Visualized Malware Based on Multiple Autoencoder Models
In this paper, we propose a classification system that uses multiple autoencoder models for identifying malware images. It is crucial to accurately classify malware before we can deploy appropriate countermeasures to prevent them from spreading. Rapid malware classification is the first step in prep...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2021-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9584838/ |