Effect of Surface Mechanical Attrition Treatment on the very high cycle fatigue behavior of TC11

As an important engine component material, TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy is subjected to high frequency cyclic loading and its failure occurs beyond 109 cycles. It is thus essential to investigate the very high cycle fatigue (VHCF) behavior of this alloy. Surface Mechanical Attrit...

全面介紹

書目詳細資料
Main Authors: Gao Tao, Sun Zhidan, Xue Hongqian, Retraint Delphine
格式: Article
語言:English
出版: EDP Sciences 2018-01-01
叢編:MATEC Web of Conferences
在線閱讀:https://doi.org/10.1051/matecconf/201816509001
實物特徵
總結:As an important engine component material, TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy is subjected to high frequency cyclic loading and its failure occurs beyond 109 cycles. It is thus essential to investigate the very high cycle fatigue (VHCF) behavior of this alloy. Surface Mechanical Attrition Treatment (SMAT) is a promising surface treatment technique to improve fatigue strength by modifying the surface microstructure. Therefore, it is important to understand the fatigue damage and failure process of SMATed titanium alloy in the VHCF regime. In this work, VHCF tests of TC11 before and after SMAT under fully reversed loading were conducted at room temperature by using an ultrasonic fatigue testing machine at a frequency of 20 kHz. The preliminary results seem to indicate that SMAT can reduce fatigue strength and fatigue life of TC11. Fracture surface analysis of the specimens before and after SMAT was performed using scanning electron microscope (SEM) to investigate the mechanisms of crack initiation and propagation. Particular attention was paid to fatigue crack initiation sites. The effect of SMAT on damage mechanism of SMATed TC11 in the VHCF regime was discussed.
ISSN:2261-236X