Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Machine learning approaches to...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information

Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information

Show other versions (1)
Bibliographic Details
Main Authors: Matthew McTeer, Douglas Applegate, Peter Mesenbrink, Vlad Ratziu, Jörn M. Schattenberg, Elisabetta Bugianesi, Andreas Geier, Manuel Romero Gomez, Jean-Francois Dufour, Mattias Ekstedt, Sven Francque, Hannele Yki-Jarvinen, Michael Allison, Luca Valenti, Luca Miele, Michael Pavlides, Jeremy Cobbold, Georgios Papatheodoridis, Adriaan G. Holleboom, Dina Tiniakos, Clifford Brass, Quentin M. Anstee, Paolo Missier
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2024-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903803/?tool=EBI
  • Holdings
  • Description
  • Other Versions (1)
  • Similar Items
  • Staff View

Internet

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903803/?tool=EBI

Similar Items

  • Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information
    by: McTeer, M, et al.
    Published: (2024)
  • Machine learning approaches to enhance diagnosis and staging of patients with MASLD using routinely available clinical information.
    by: Matthew McTeer, et al.
    Published: (2024-01-01)
  • Handling Overlapping Asymmetric Data Sets—A Twice Penalized P-Spline Approach
    by: Matthew McTeer, et al.
    Published: (2024-03-01)
  • WHY DOES NON-ALCOHOLIC FATTY LIVER DISEASE (NAFLD) CONTRIBUTE TO CARDIOVASCULAR OUTCOMES?
    by: Hannele Yki-Järvinen
    Published: (2016-11-01)
  • Practice Recommendations for the Management of MASLD in Primary Care: Consensus Results
    by: Christos Lionis, et al.
    Published: (2024-08-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs