Local invariant manifolds for delay differential equations with state space in $C^1((-\infty,0],\mathbb{R}^n)$
Consider the delay differential equation $x'(t)=f(x_t)$ with the history $x_t:(-\infty,0]\to\mathbb{R}^n$ of $x$ at 'time' $t$ defined by $x_t(s)=x(t+s)$. In order not to lose any possible entire solution of any example we work in the Fréchet space $C^1((-\infty,0],\mathbb{R}^n)$, wit...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2016-09-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=4679 |