Spanning trees of finite Sierpiński graphs
We show that the number of spanning trees in the finite Sierpiński graph of level $n$ is given by $\sqrt[4]{\frac{3}{20}} (\frac{5}{3})^{-n/2} (\sqrt[4]{540})^{3^n}$. The proof proceeds in two steps: First, we show that the number of spanning trees and two further quantities satisfy a $3$-dimensiona...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Discrete Mathematics & Theoretical Computer Science
2006-01-01
|
Series: | Discrete Mathematics & Theoretical Computer Science |
Subjects: | |
Online Access: | https://dmtcs.episciences.org/3494/pdf |