Computational Approaches to the Rational Design of Tubulin-Targeting Agents

Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin bind...

Full description

Bibliographic Details
Main Authors: Helena Pérez-Peña, Anne-Catherine Abel, Maxim Shevelev, Andrea E. Prota, Stefano Pieraccini, Dragos Horvath
Format: Article
Language:English
Published: MDPI AG 2023-02-01
Series:Biomolecules
Subjects:
Online Access:https://www.mdpi.com/2218-273X/13/2/285
Description
Summary:Microtubules are highly dynamic polymers of α,β-tubulin dimers which play an essential role in numerous cellular processes such as cell proliferation and intracellular transport, making them an attractive target for cancer and neurodegeneration research. To date, a large number of known tubulin binders were derived from natural products, while only one was developed by rational structure-based drug design. Several of these tubulin binders show promising in vitro profiles while presenting unacceptable off-target effects when tested in patients. Therefore, there is a continuing demand for the discovery of safer and more efficient tubulin-targeting agents. Since tubulin structural data is readily available, the employment of computer-aided design techniques can be a key element to focus on the relevant chemical space and guide the design process. Due to the high diversity and quantity of structural data available, we compiled here a guide to the accessible tubulin-ligand structures. Furthermore, we review different ligand and structure-based methods recently used for the successful selection and design of new tubulin-targeting agents.
ISSN:2218-273X