On relation between statistical ideal and ideal generated by a modulus function

Ideal on an arbitrary non-empty set $\Omega$ it's a non-empty family of subset $\mathfrak{I}$ of the set $\Omega$ which satisfies the following axioms: $\Omega \notin \mathfrak{I}$, if $A, B \in \mathfrak{I}$, then $A \cup B \in \mathfrak{I}$, if $A \in \mathfrak{I}$ and $D \subset A$, then $D...

Full description

Bibliographic Details
Main Author: D. Seliutin
Format: Article
Language:English
Published: V.N. Karazin Kharkiv National University Publishing 2022-01-01
Series:Visnik Harkivsʹkogo Nacionalʹnogo Universitetu im. V.N. Karazina. Cepiâ Matematika, Prikladna Matematika i Mehanika
Subjects:
Online Access:https://periodicals.karazin.ua/mech_math/article/view/20902