Complex mathematical SIR model for spreading of COVID-19 virus with Mittag-Leffler kernel
Abstract This paper investigates a new model on coronavirus-19 disease (COVID-19), that is complex fractional SIR epidemic model with a nonstandard nonlinear incidence rate and a recovery, where derivative operator with Mittag-Leffler kernel in the Caputo sense (ABC). The model has two equilibrium p...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-07-01
|
Series: | Advances in Difference Equations |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13662-021-03470-1 |