Multi-Attention Multi-Image Super-Resolution Transformer (MAST) for Remote Sensing
Deep-learning-driven multi-image super-resolution (MISR) reconstruction techniques have significant application value in the field of aerospace remote sensing. In particular, Transformer-based models have shown outstanding performance in super-resolution tasks. However, current MISR models have some...
Asıl Yazarlar: | Jiaao Li, Qunbo Lv, Wenjian Zhang, Baoyu Zhu, Guiyu Zhang, Zheng Tan |
---|---|
Materyal Türü: | Makale |
Dil: | English |
Baskı/Yayın Bilgisi: |
MDPI AG
2023-08-01
|
Seri Bilgileri: | Remote Sensing |
Konular: | |
Online Erişim: | https://www.mdpi.com/2072-4292/15/17/4183 |
Benzer Materyaller
-
Burst-Enhanced Super-Resolution Network (BESR)
Yazar:: Jiaao Li, ve diğerleri
Baskı/Yayın Bilgisi: (2024-03-01) -
Lightweight Multi-Scale Asymmetric Attention Network for Image Super-Resolution
Yazar:: Min Zhang, ve diğerleri
Baskı/Yayın Bilgisi: (2021-12-01) -
Multi-Window Fusion Spatial-Frequency Joint Self-Attention for Remote-Sensing Image Super-Resolution
Yazar:: Ziang Li, ve diğerleri
Baskı/Yayın Bilgisi: (2024-10-01) -
Super-Resolution Reconstruction for Multi-Angle Remote Sensing Images Considering Resolution Differences
Yazar:: Hongyan Zhang, ve diğerleri
Baskı/Yayın Bilgisi: (2014-01-01) -
Multi-attention fusion transformer for single-image super-resolution
Yazar:: Guanxing Li, ve diğerleri
Baskı/Yayın Bilgisi: (2024-05-01)