Characterizations of *-antiderivable mappings on operator algebras
Let A{\mathcal{A}} be a ∗\ast -algebra, ℳ{\mathcal{ {\mathcal M} }} be a ∗\ast -A{\mathcal{A}}-bimodule, and δ\delta be a linear mapping from A{\mathcal{A}} into ℳ{\mathcal{ {\mathcal M} }}. δ\delta is called a ∗\ast -derivation if δ(AB)=Aδ(B)+δ(A)B\delta \left(AB)=A\delta \left(B)+\delta \left(A)...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2022-06-01
|
Series: | Open Mathematics |
Subjects: | |
Online Access: | https://doi.org/10.1515/math-2022-0047 |