Characterizations of *-antiderivable mappings on operator algebras

Let A{\mathcal{A}} be a ∗\ast -algebra, ℳ{\mathcal{ {\mathcal M} }} be a ∗\ast -A{\mathcal{A}}-bimodule, and δ\delta be a linear mapping from A{\mathcal{A}} into ℳ{\mathcal{ {\mathcal M} }}. δ\delta is called a ∗\ast -derivation if δ(AB)=Aδ(B)+δ(A)B\delta \left(AB)=A\delta \left(B)+\delta \left(A)...

Full description

Bibliographic Details
Main Authors: An Guangyu, Zhang Xueli, He Jun
Format: Article
Language:English
Published: De Gruyter 2022-06-01
Series:Open Mathematics
Subjects:
Online Access:https://doi.org/10.1515/math-2022-0047