Large-scale manufacturing of base-edited chimeric antigen receptor T cells

Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. He...

Full description

Bibliographic Details
Main Authors: Rosie Woodruff, Farhaan Parekh, Katarina Lamb, Leila Mekkaoui, Christopher Allen, Katerina Smetanova, Jasmine Huang, Alex Williams, Gerardo Santiago Toledo, Koki Lilova, Claire Roddie, James Sillibourne, Martin Pule
Format: Article
Language:English
Published: Elsevier 2023-12-01
Series:Molecular Therapy: Methods & Clinical Development
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050123001626
Description
Summary:Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. Here, we address this problem by developing a simple protocol for manufacturing base-edited cells using circular RNA (circRNA), which is less expensive to synthesize. Compared with linear mRNA, higher editing efficiencies were achieved with circRNA, enabling an 8-fold reduction in the amount of RNA required. We used this protocol to manufacture a clinical dose (1 × 108 cells) of base-edited chimeric antigen receptor (CAR) T cells lacking expression of the inhibitory receptor, PD-1. Editing efficiencies of up to 86% were obtained using 0.25 μg circRNA/1 × 106 cells. Increased editing efficiencies with circRNA were attributed to more efficient translation. These results suggest that circRNA, which is less expensive to produce than linear mRNA, is a viable option for reducing the cost of manufacturing base-edited cells at scale.
ISSN:2329-0501