A steel surface defect detection method based on improved RetinaNet
Abstract To address the issue of low detection accuracy caused by the variety of steel surface defect types, large shape differences, and the similarity between defects and the background, this paper proposes an improved method for detecting steel surface defects based on RetinaNet. Firstly, deforma...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-02-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-88527-x |