Pharmacogenetic variants in TPMT alter cellular responses to cisplatin in inner ear cell lines.

Cisplatin is a highly-effective and widely-used chemotherapeutic agent that causes ototoxicity in many patients. Pharmacogenomic studies of key genes controlling drug biotransformation identified variants in thiopurine methyltransferase (TPMT) as predictors of cisplatin-induced ototoxicity, although...

Full description

Bibliographic Details
Main Authors: Amit P Bhavsar, Erandika P Gunaretnam, Yuling Li, Jafar S Hasbullah, Bruce C Carleton, Colin J D Ross
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2017-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC5391095?pdf=render
Description
Summary:Cisplatin is a highly-effective and widely-used chemotherapeutic agent that causes ototoxicity in many patients. Pharmacogenomic studies of key genes controlling drug biotransformation identified variants in thiopurine methyltransferase (TPMT) as predictors of cisplatin-induced ototoxicity, although the mechanistic basis of this interaction has not been reported. Expression constructs of TPMT*3A, *3B and *3C variants were generated and monitored in cultured cells. Cellular TPMT*3A levels were detected at >20-fold lower amounts than the wild type confirming the unstable nature of this variant. The expression of wild type TPMT (TPMT*1) in two murine ear cell lines, HEI-OC1 and UB/OC-1, significantly mitigated their susceptibility to cisplatin toxicity. Cisplatin treatment induced Tlr4 gene expression in HEI-OC1 cells and this response was blunted by the expression of wild type TPMT but not TPMT*3A. In line with the significant mitigation of TPMT*1-expressing cells to cisplatin cytotoxicity, these findings demonstrate a drug-gene interaction between increased TPMT activity and decreased susceptibility to cisplatin-induced toxicity of inner ear cells.
ISSN:1932-6203