On a generalization of prime submodules of a module over a commutative ring
Let $R$ be a commutative ring with identity, and $n\geq 1$ an integer. A proper submodule $N$ of an $R$-module $M$ is called an $n$-prime submodule if whenever $a_1 \cdots a_{n+1}m\in N$ for some non-units $a_1, \ldots , a_{n+1}\in R$ and $m\in M$, then $m\in N$ or there are $n$ of the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Matemática
2019-01-01
|
Series: | Boletim da Sociedade Paranaense de Matemática |
Subjects: | |
Online Access: | http://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/33962 |