Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck

At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) object...

Full description

Bibliographic Details
Main Authors: Andrew K. Tan, Max Tegmark, Isaac L. Chuang
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/24/6/771