Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) object...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-05-01
|
Series: | Entropy |
Subjects: | |
Online Access: | https://www.mdpi.com/1099-4300/24/6/771 |