Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
At the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) object...
Príomhchruthaitheoirí: | Andrew K. Tan, Max Tegmark, Isaac L. Chuang |
---|---|
Formáid: | Alt |
Teanga: | English |
Foilsithe / Cruthaithe: |
MDPI AG
2022-05-01
|
Sraith: | Entropy |
Ábhair: | |
Rochtain ar líne: | https://www.mdpi.com/1099-4300/24/6/771 |
Míreanna comhchosúla
Míreanna comhchosúla
-
Pareto-Optimal Clustering with the Primal Deterministic Information Bottleneck
de réir: Tan, Andrew K., et al.
Foilsithe / Cruthaithe: (2022) -
Learnability for the Information Bottleneck
de réir: Tailin Wu, et al.
Foilsithe / Cruthaithe: (2019-09-01) -
Criticality in Pareto Optimal Grammars?
de réir: Luís F Seoane, et al.
Foilsithe / Cruthaithe: (2020-01-01) -
Rankings analysis with the Optimized Pareto method.
de réir: Carlos Andres Delgado-Saavedra, et al.
Foilsithe / Cruthaithe: (2020-05-01) -
JOB SHOP SCHEDULING BIOBJETIVO MEDIANTE ENFRIAMIENTO SIMULADO Y ENFOQUE DE PARETO JOB-SHOP SCHEDULING: BIO-OBJECTIVE THROUGH SIMULATED COOLING AND PARETO PRINCIPLE
de réir: Juan Carlos Osorio, et al.
Foilsithe / Cruthaithe: (2012-12-01)