Interpretable molecular encodings and representations for machine learning tasks
Molecular encodings and their usage in machine learning models have demonstrated significant breakthroughs in biomedical applications, particularly in the classification of peptides and proteins. To this end, we propose a new encoding method: Interpretable Carbon-based Array of Neighborhoods (iCAN)....
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2024-12-01
|
Series: | Computational and Structural Biotechnology Journal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2001037024001818 |