On the number of integers which form perfect powers in the way of $ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k $
<p>Let $ k \geqslant 2 $ be an integer. We studied the number of integers which form perfect $ k $-th powers in the way of</p> <p class="disp_formula">$ x(y_1^2+y_2^2+y_3^2+y_4^2) = z^k. $</p> <p>For $ k \geqslant4 $, we established a unified asymptoti...
Autor principal: | Tingting Wen |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
AIMS Press
2024-02-01
|
Colección: | AIMS Mathematics |
Materias: | |
Acceso en línea: | https://www.aimspress.com/article/doi/10.3934/math.2024423?viewType=HTML |
Ejemplares similares
-
On the Diophantine equation 2x + 11y = z2
por: Somchit Chotchaisthit
Publicado: (2013-07-01) -
Gaussian Integer Solutions of the Diophantine Equation x^4+y^4=z^3 for x≠ y
por: Shahrina Ismail, et al.
Publicado: (2023-10-01) -
On the Ternary Exponential Diophantine Equation Equating a Perfect Power and Sum of Products of Consecutive Integers
por: S. Subburam, et al.
Publicado: (2021-07-01) -
Complete solutions of the simultaneous Pell's equations $ (a^2+2)x^2-y^2 = 2 $ and $ x^2-bz^2 = 1 $
por: Cencen Dou, et al.
Publicado: (2023-06-01) -
Solution of diophantine equation x⁴ + y⁴= pᵏz³ for primes 2 ≤ p ≤ 13.
por: Ismail, Shahrina
Publicado: (2011)