Catalytic asymmetric oxa-Diels–Alder reaction of acroleins with simple alkenes

Abstract The catalytic asymmetric inverse-electron-demand oxa-Diels–Alder (IODA) reaction is a highly effective synthetic method for creating enantioenriched six-membered oxygen-containing heterocycles. Despite significant effort in this area, simple α,β-unsaturated aldehydes/ketones and nonpolarize...

Full description

Bibliographic Details
Main Authors: Lei Zeng, Shihan Liu, Yu Lan, Lizhu Gao
Format: Article
Language:English
Published: Nature Portfolio 2023-06-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-023-39184-z
Description
Summary:Abstract The catalytic asymmetric inverse-electron-demand oxa-Diels–Alder (IODA) reaction is a highly effective synthetic method for creating enantioenriched six-membered oxygen-containing heterocycles. Despite significant effort in this area, simple α,β-unsaturated aldehydes/ketones and nonpolarized alkenes are seldom utilized as substrates due to their low reactivity and difficulties in achieving enantiocontrol. This report describes an intermolecular asymmetric IODA reaction between α-bromoacroleins and neutral alkenes that is catalyzed by oxazaborolidinium cation 1f. The resulting dihydropyrans are produced in high yields and excellent enantioselectivities over a broad range of substrates. The use of acrolein in the IODA reaction produces 3,4-dihydropyran with an unoccupied C6 position in the ring structure. This unique feature is utilized in the efficient synthesis of (+)-Centrolobine, demonstrating the practical synthetic utility of this reaction. Additionally, the study found that 2,6-trans-tetrahydropyran can undergo efficient epimerization into 2,6-cis-tetrahydropyran under Lewis acidic conditions. This structural core is widespread in natural products.
ISSN:2041-1723