Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase

LTA<sub>4</sub>H is a bifunctional zinc metalloenzyme that converts leukotriene A<sub>4</sub> (LTA<sub>4</sub>) into leukotriene B<sub>4</sub> (LTB<sub>4</sub>), one of the most potent chemotactic agents involved in acute and chronic inflam...

Full description

Bibliographic Details
Main Authors: Miquel Canyelles-Niño, Àngels González-Lafont, José M. Lluch
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/23/6/3140
_version_ 1797470923128832000
author Miquel Canyelles-Niño
Àngels González-Lafont
José M. Lluch
author_facet Miquel Canyelles-Niño
Àngels González-Lafont
José M. Lluch
author_sort Miquel Canyelles-Niño
collection DOAJ
description LTA<sub>4</sub>H is a bifunctional zinc metalloenzyme that converts leukotriene A<sub>4</sub> (LTA<sub>4</sub>) into leukotriene B<sub>4</sub> (LTB<sub>4</sub>), one of the most potent chemotactic agents involved in acute and chronic inflammatory diseases. In this reaction, LTA<sub>4</sub>H acts as an epoxide hydrolase with a unique and fascinating mechanism, which includes the stereoselective attachment of one water molecule to the carbon backbone of LTA<sub>4</sub> several methylene units away from the epoxide moiety. By combining Molecular Dynamics simulations and Quantum Mechanics/Molecular Mechanics calculations, we obtained a very detailed molecular picture of the different consecutive steps of that mechanism. By means of a rather unusual 1,7-nucleophilic substitution through a clear S<sub>N</sub>1 mechanism, the epoxide opens and the triene moiety of the substrate twists in such a way that the bond C<sub>6</sub>-C<sub>7</sub> adopts its <i>cis</i> (<i>Z</i>) configuration, thus exposing the <i>R</i> face of C<sub>12</sub> to the addition of a water molecule hydrogen-bonded to ASP375. Thus, the two stereochemical features that are required for the bioactivity of LTB<sub>4</sub> appear to be closely related. The noncovalent π-π stacking interactions between the triene moiety and two tyrosines (TYR267 and, especially, TYR378) that wrap the triene system along the whole reaction explain the preference for the <i>cis</i> configuration inside LTA<sub>4</sub>H.
first_indexed 2024-03-09T19:42:47Z
format Article
id doaj.art-d8275da40d20474d9b7b475ac1119b30
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-09T19:42:47Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-d8275da40d20474d9b7b475ac1119b302023-11-24T01:33:24ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672022-03-01236314010.3390/ijms23063140Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> HydrolaseMiquel Canyelles-Niño0Àngels González-Lafont1José M. Lluch2Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, SpainDepartament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, SpainDepartament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, SpainLTA<sub>4</sub>H is a bifunctional zinc metalloenzyme that converts leukotriene A<sub>4</sub> (LTA<sub>4</sub>) into leukotriene B<sub>4</sub> (LTB<sub>4</sub>), one of the most potent chemotactic agents involved in acute and chronic inflammatory diseases. In this reaction, LTA<sub>4</sub>H acts as an epoxide hydrolase with a unique and fascinating mechanism, which includes the stereoselective attachment of one water molecule to the carbon backbone of LTA<sub>4</sub> several methylene units away from the epoxide moiety. By combining Molecular Dynamics simulations and Quantum Mechanics/Molecular Mechanics calculations, we obtained a very detailed molecular picture of the different consecutive steps of that mechanism. By means of a rather unusual 1,7-nucleophilic substitution through a clear S<sub>N</sub>1 mechanism, the epoxide opens and the triene moiety of the substrate twists in such a way that the bond C<sub>6</sub>-C<sub>7</sub> adopts its <i>cis</i> (<i>Z</i>) configuration, thus exposing the <i>R</i> face of C<sub>12</sub> to the addition of a water molecule hydrogen-bonded to ASP375. Thus, the two stereochemical features that are required for the bioactivity of LTB<sub>4</sub> appear to be closely related. The noncovalent π-π stacking interactions between the triene moiety and two tyrosines (TYR267 and, especially, TYR378) that wrap the triene system along the whole reaction explain the preference for the <i>cis</i> configuration inside LTA<sub>4</sub>H.https://www.mdpi.com/1422-0067/23/6/3140leukotriensleukotriene A<sub>4</sub> hydrolaseenzyme catalysisQM/MM calculationsmolecular dynamics simulationsproinflammatory lipid mediators
spellingShingle Miquel Canyelles-Niño
Àngels González-Lafont
José M. Lluch
Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
International Journal of Molecular Sciences
leukotriens
leukotriene A<sub>4</sub> hydrolase
enzyme catalysis
QM/MM calculations
molecular dynamics simulations
proinflammatory lipid mediators
title Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
title_full Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
title_fullStr Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
title_full_unstemmed Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
title_short Theoretical Characterization of the Step-by-Step Mechanism of Conversion of Leukotriene A<sub>4</sub> to Leukotriene B<sub>4</sub> Catalysed by the Enzyme Leukotriene A<sub>4</sub> Hydrolase
title_sort theoretical characterization of the step by step mechanism of conversion of leukotriene a sub 4 sub to leukotriene b sub 4 sub catalysed by the enzyme leukotriene a sub 4 sub hydrolase
topic leukotriens
leukotriene A<sub>4</sub> hydrolase
enzyme catalysis
QM/MM calculations
molecular dynamics simulations
proinflammatory lipid mediators
url https://www.mdpi.com/1422-0067/23/6/3140
work_keys_str_mv AT miquelcanyellesnino theoreticalcharacterizationofthestepbystepmechanismofconversionofleukotrieneasub4subtoleukotrienebsub4subcatalysedbytheenzymeleukotrieneasub4subhydrolase
AT angelsgonzalezlafont theoreticalcharacterizationofthestepbystepmechanismofconversionofleukotrieneasub4subtoleukotrienebsub4subcatalysedbytheenzymeleukotrieneasub4subhydrolase
AT josemlluch theoreticalcharacterizationofthestepbystepmechanismofconversionofleukotrieneasub4subtoleukotrienebsub4subcatalysedbytheenzymeleukotrieneasub4subhydrolase