Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
Abstract In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+ϕu=f(u),x∈R3,−Δϕ=u2,x∈R3, $$\textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=f(u), &x \in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-04-01
|
Series: | Boundary Value Problems |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13661-019-1183-3 |