Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$

Abstract In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+ϕu=f(u),x∈R3,−Δϕ=u2,x∈R3, $$\textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=f(u), &x \in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2},...

Full description

Bibliographic Details
Main Authors: Da-Bin Wang, Tian-Jun Li, Xinan Hao
Format: Article
Language:English
Published: SpringerOpen 2019-04-01
Series:Boundary Value Problems
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13661-019-1183-3
_version_ 1818311706692026368
author Da-Bin Wang
Tian-Jun Li
Xinan Hao
author_facet Da-Bin Wang
Tian-Jun Li
Xinan Hao
author_sort Da-Bin Wang
collection DOAJ
description Abstract In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+ϕu=f(u),x∈R3,−Δϕ=u2,x∈R3, $$\textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=f(u), &x \in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}, &x\in \mathbb{R}^{3}, \end{cases} $$ where a, b are positive constants, V∈C(R3,R+) $V\in \mathcal{C}(\mathbb{R} ^{3},\mathbb{R}^{+})$. By using constraint variational method and the quantitative deformation lemma, we obtain a least-energy sign-changing (or nodal) solution ub $u_{b}$ to this problem, and study the energy property of ub $u_{b}$. Moreover, we investigate the asymptotic behavior of ub $u_{b}$ as the parameter b↘0 ${b\searrow 0}$.
first_indexed 2024-12-13T08:06:13Z
format Article
id doaj.art-d89b6d1ba8dc41c28fbf41e30403197b
institution Directory Open Access Journal
issn 1687-2770
language English
last_indexed 2024-12-13T08:06:13Z
publishDate 2019-04-01
publisher SpringerOpen
record_format Article
series Boundary Value Problems
spelling doaj.art-d89b6d1ba8dc41c28fbf41e30403197b2022-12-21T23:54:19ZengSpringerOpenBoundary Value Problems1687-27702019-04-012019112010.1186/s13661-019-1183-3Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$Da-Bin Wang0Tian-Jun Li1Xinan Hao2Department of Applied Mathematics, Lanzhou University of TechnologyDepartment of Applied Mathematics, Lanzhou University of TechnologySchool of Mathematical Sciences, Qufu Normal UniversityAbstract In this paper, we study the following Kirchhoff–Schrödinger–Poisson systems: {−(a+b∫R3|∇u|2dx)Δu+V(x)u+ϕu=f(u),x∈R3,−Δϕ=u2,x∈R3, $$\textstyle\begin{cases} -(a+b\int _{\mathbb{R}^{3}} \vert \nabla u \vert ^{2}\,dx)\Delta u+V(x)u+\phi u=f(u), &x \in \mathbb{R}^{3}, \\ -\Delta \phi =u^{2}, &x\in \mathbb{R}^{3}, \end{cases} $$ where a, b are positive constants, V∈C(R3,R+) $V\in \mathcal{C}(\mathbb{R} ^{3},\mathbb{R}^{+})$. By using constraint variational method and the quantitative deformation lemma, we obtain a least-energy sign-changing (or nodal) solution ub $u_{b}$ to this problem, and study the energy property of ub $u_{b}$. Moreover, we investigate the asymptotic behavior of ub $u_{b}$ as the parameter b↘0 ${b\searrow 0}$.http://link.springer.com/article/10.1186/s13661-019-1183-3Sign-changing solutionNonlocal termVariation methods
spellingShingle Da-Bin Wang
Tian-Jun Li
Xinan Hao
Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
Boundary Value Problems
Sign-changing solution
Nonlocal term
Variation methods
title Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
title_full Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
title_fullStr Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
title_full_unstemmed Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
title_short Least-energy sign-changing solutions for Kirchhoff–Schrödinger–Poisson systems in R3 $\mathbb{R}^{3}$
title_sort least energy sign changing solutions for kirchhoff schrodinger poisson systems in r3 mathbb r 3
topic Sign-changing solution
Nonlocal term
Variation methods
url http://link.springer.com/article/10.1186/s13661-019-1183-3
work_keys_str_mv AT dabinwang leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemsinr3mathbbr3
AT tianjunli leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemsinr3mathbbr3
AT xinanhao leastenergysignchangingsolutionsforkirchhoffschrodingerpoissonsystemsinr3mathbbr3