From Text to Insight: An Integrated CNN-BiLSTM-GRU Model for Arabic Cyberbullying Detection
Several research on cyberbullying detection have employed different deep learning and machine learning methodologies to achieve promising outcomes. Nevertheless, most of them have primarily concentrated on using English data for both purposes: training and testing, with only a limited number conside...
Autores principales: | Eman-Yaser Daraghmi, Sajida Qadan, Yousef-Awwad Daraghmi, Rami Yousuf, Omar Cheikhrouhou, Mohammed Baz |
---|---|
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
IEEE
2024-01-01
|
Colección: | IEEE Access |
Materias: | |
Acceso en línea: | https://ieeexplore.ieee.org/document/10605813/ |
Ejemplares similares
-
Comparative Analysis of Word Embeddings for Multiclass Cyberbullying Detection
por: Azhi Faraj, et al.
Publicado: (2024-02-01) -
Chinese Cyberbullying Detection Using XLNet and Deep Bi-LSTM Hybrid Model
por: Shifeng Chen, et al.
Publicado: (2024-02-01) -
Cyberbullying as a Learned Behavior: Theoretical and Applied Implications
por: Christopher P. Barlett
Publicado: (2023-02-01) -
A Novel CNN-BiLSTM-GRU Hybrid Deep Learning Model for Human Activity Recognition
por: Pooja Lalwani, et al.
Publicado: (2024-11-01) -
RAPD: Rapid and Participatory Application Development of Usable Systems During COVID19 Crisis
por: Yousef-Awwad Daraghmi, et al.
Publicado: (2022-01-01)