Detection and quantitation of host cell proteins in monoclonal antibody drug products using automated sample preparation and data-independent acquisition LC-MS/MS

Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the...

Full description

Bibliographic Details
Main Authors: Lisa Strasser, Giorgio Oliviero, Craig Jakes, Izabela Zaborowska, Patrick Floris, Meire Ribeiro da Silva, Florian Füssl, Sara Carillo, Jonathan Bones
Format: Article
Language:English
Published: Elsevier 2021-12-01
Series:Journal of Pharmaceutical Analysis
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2095177921000502
Description
Summary:Ensuring the removal of host cell proteins (HCPs) during downstream processing of recombinant proteins such as monoclonal antibodies (mAbs) remains a challenge. Since residual HCPs might affect product stability or safety, constant monitoring is required to demonstrate their removal to be below the regulatory accepted level of 100 ng/mg. The current standard analytical approach for this procedure is based on ELISA; however, this approach only measures the overall HCP content. Therefore, the use of orthogonal methods, such as liquid chromatography-mass spectrometry (LC-MS), has been established, as it facilitates the quantitation of total HCPs as well as the identification and quantitation of the individual HCPs present. In the present study, a workflow for HCP detection and quantitation using an automated magnetic bead-based sample preparation, in combination with a data-independent acquisition (DIA) LC-MS analysis, was established. Employing the same instrumental setup commonly used for peptide mapping analysis of mAbs allows for its quick and easy implementation into pre-existing workflows, avoiding the need for dedicated instrumentation or personnel. Thereby, quantitation of HCPs over a broad dynamic range was enabled to allow monitoring of problematic HCPs or to track changes upon altered bioprocessing conditions.
ISSN:2095-1779