New lower bounds for the number of conjugacy classes in finite nilpotent groups

P‎. ‎Hall's classical equality for the number of conjugacy classes in $p$-groups yields $k(G) \ge (3/2) \log_2 |G|$ when $G$ is nilpotent‎. ‎Using only Hall's theorem‎, ‎this is the best one can do when $|G| = 2^n$‎. ‎Using a result of G.J‎. ‎Sherman‎, ‎we improve the constant $3/2$ to $5/...

Full description

Bibliographic Details
Main Author: Edward A‎. ‎Bertram
Format: Article
Language:English
Published: University of Isfahan 2022-06-01
Series:International Journal of Group Theory
Subjects:
Online Access:https://ijgt.ui.ac.ir/article_25810_6cf96773007f3bab56c3708c2139b4e7.pdf