New lower bounds for the number of conjugacy classes in finite nilpotent groups
P. Hall's classical equality for the number of conjugacy classes in $p$-groups yields $k(G) \ge (3/2) \log_2 |G|$ when $G$ is nilpotent. Using only Hall's theorem, this is the best one can do when $|G| = 2^n$. Using a result of G.J. Sherman, we improve the constant $3/2$ to $5/...
Автор: | |
---|---|
Формат: | Стаття |
Мова: | English |
Опубліковано: |
University of Isfahan
2022-06-01
|
Серія: | International Journal of Group Theory |
Предмети: | |
Онлайн доступ: | https://ijgt.ui.ac.ir/article_25810_6cf96773007f3bab56c3708c2139b4e7.pdf |