New lower bounds for the number of conjugacy classes in finite nilpotent groups

P‎. ‎Hall's classical equality for the number of conjugacy classes in $p$-groups yields $k(G) \ge (3/2) \log_2 |G|$ when $G$ is nilpotent‎. ‎Using only Hall's theorem‎, ‎this is the best one can do when $|G| = 2^n$‎. ‎Using a result of G.J‎. ‎Sherman‎, ‎we improve the constant $3/2$ to $5/...

Full description

Bibliographic Details
Main Author: Edward A‎. ‎Bertram
Format: Article
Language:English
Published: University of Isfahan 2022-06-01
Series:International Journal of Group Theory
Subjects:
Online Access:https://ijgt.ui.ac.ir/article_25810_6cf96773007f3bab56c3708c2139b4e7.pdf
_version_ 1818487556665245696
author Edward A‎. ‎Bertram
author_facet Edward A‎. ‎Bertram
author_sort Edward A‎. ‎Bertram
collection DOAJ
description P‎. ‎Hall's classical equality for the number of conjugacy classes in $p$-groups yields $k(G) \ge (3/2) \log_2 |G|$ when $G$ is nilpotent‎. ‎Using only Hall's theorem‎, ‎this is the best one can do when $|G| = 2^n$‎. ‎Using a result of G.J‎. ‎Sherman‎, ‎we improve the constant $3/2$ to $5/3$‎, ‎which is best possible across all nilpotent groups and to $15/8$ when $G$ is nilpotent and $|G| \ne 8,16$‎. ‎These results are then used to prove that $k(G) > \log_3(|G|)$ when $G/N$ is nilpotent‎, ‎under natural conditions on $N \trianglelefteq G$‎. ‎Also‎, ‎when $G'$ is nilpotent of class $c$‎, ‎we prove that $k(G) \ge (\log |G|)^t$ when $|G|$ is large enough‎, ‎depending only on $(c,t)$‎.
first_indexed 2024-12-10T16:39:29Z
format Article
id doaj.art-d937c2cfb81b401e9cf2dbb2149743a8
institution Directory Open Access Journal
issn 2251-7650
2251-7669
language English
last_indexed 2024-12-10T16:39:29Z
publishDate 2022-06-01
publisher University of Isfahan
record_format Article
series International Journal of Group Theory
spelling doaj.art-d937c2cfb81b401e9cf2dbb2149743a82022-12-22T01:41:16ZengUniversity of IsfahanInternational Journal of Group Theory2251-76502251-76692022-06-0111210911910.22108/ijgt.2021.128396.168725810New lower bounds for the number of conjugacy classes in finite nilpotent groupsEdward A‎. ‎Bertram0‎Department of‎ ‎Mathematics‎, ‎University of Hawaii‎, ‎Honolulu‎, ‎HI 96822‎, ‎USAP‎. ‎Hall's classical equality for the number of conjugacy classes in $p$-groups yields $k(G) \ge (3/2) \log_2 |G|$ when $G$ is nilpotent‎. ‎Using only Hall's theorem‎, ‎this is the best one can do when $|G| = 2^n$‎. ‎Using a result of G.J‎. ‎Sherman‎, ‎we improve the constant $3/2$ to $5/3$‎, ‎which is best possible across all nilpotent groups and to $15/8$ when $G$ is nilpotent and $|G| \ne 8,16$‎. ‎These results are then used to prove that $k(G) > \log_3(|G|)$ when $G/N$ is nilpotent‎, ‎under natural conditions on $N \trianglelefteq G$‎. ‎Also‎, ‎when $G'$ is nilpotent of class $c$‎, ‎we prove that $k(G) \ge (\log |G|)^t$ when $|G|$ is large enough‎, ‎depending only on $(c,t)$‎.https://ijgt.ui.ac.ir/article_25810_6cf96773007f3bab56c3708c2139b4e7.pdf‎nilpotent‎‎conjugacy‎‎derived series
spellingShingle Edward A‎. ‎Bertram
New lower bounds for the number of conjugacy classes in finite nilpotent groups
International Journal of Group Theory
‎nilpotent‎
‎conjugacy‎
‎derived series
title New lower bounds for the number of conjugacy classes in finite nilpotent groups
title_full New lower bounds for the number of conjugacy classes in finite nilpotent groups
title_fullStr New lower bounds for the number of conjugacy classes in finite nilpotent groups
title_full_unstemmed New lower bounds for the number of conjugacy classes in finite nilpotent groups
title_short New lower bounds for the number of conjugacy classes in finite nilpotent groups
title_sort new lower bounds for the number of conjugacy classes in finite nilpotent groups
topic ‎nilpotent‎
‎conjugacy‎
‎derived series
url https://ijgt.ui.ac.ir/article_25810_6cf96773007f3bab56c3708c2139b4e7.pdf
work_keys_str_mv AT edwardabertram newlowerboundsforthenumberofconjugacyclassesinfinitenilpotentgroups